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Atomic Physics 

Introduction 

The structure and behavior of the atom are responsible for the emergence 

of the virtual world. The very small distances of the atom and the 

properties of the nuclei require a new type, and this type is quantum 

mechanics, which attempts to describe the properties and behaviors of 

atomic and nuclear. And the development of quantum mechanics in order 

to be able to explain the emission and absorption of light from the atom. 

The simplest type of atom is hydrogen, which consists of one electron, 

which orbits around the nucleus, which contains one proton. 

The aim of these lectures is to understand atomic physics, as well as 

understanding atomic physics. It helps to study solid-state physics and 

astronomy, as well as its importance in many applications in medicine, 

communications, lasers, and others. 

Theory of Relativity 

The theory of relativity was discovered by the German scientist 

Einstein in 1905, and this theory considers the reality analysis, 

the speed of light in a vacuum has the same value regardless of 

the speed of the source or the movement of the observer. It is 

not possible to measure the absolute velocities, but only take the 

velocities in relation to the other body. The theory predicts that 
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The mass of the particle changes with the change of velocity, and 

according to the theory of relativity, the mass of the particle according to 

the above equation 
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Energy equivalence and relative mass 
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We note that equation (1) is equal to equation (4), so we get 
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Equation (5) represents the relative change of kinetic energy 

with the integration of both sides 
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Where Ek is kinetic energy, 2

om c  potential energy and E is total 

energy 
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 To find the relationship between the body's total energy and 

momentum, we multiply equation (2) by c
2
 to get 
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The second term is called the correction term 

energy of 0.511 MeV and  potential: An electron has a Example

a kinetic energy of 200 keV. Find the speed of its velocity 

Solution 
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Example \ What is the kinetic energy of a neutron with a 

velocity of 6×10
7
 m/sec where mn=939.55 MeV 

Solution 
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     (1.021 1)939.55 19.73MeV         

 

Black Body Radiation 

Many scientists tried to discover the basic laws of thermal radiation 

based on properties that were known, the most important of which is 

1-  The body becomes glowing with increasing temperature, and the 

amount of radiation emitted also changes with the change in 

temperature 

2-  The color of the emission changes with increasing temperature. 

For example, if a piece of iron is heated, we notice a gradual 

change in its color from dark, red, orange and yellow to white. 

If a shiny metal particle is taken and a light is shined on it, it will reflect 

almost all the light falling on the metal piece, but if this light falls on a 

black body, it will absorb all the light and may not be reflected from it at 

all. 
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Through this experiment, scientists drew attention to the black body, 

since it absorbs all radiation, so it heats up at a higher temperature than 

the other body if it is exposed to the same temperature. But if it is 

considered as a source of light radiation, its intensity will be greater if it 

is raised to the same temperature in relation to the other body. 

The scientists chose a hollow sphere with a small hole in it and its inner 

walls covered with black marble. If radiation enters through the hole, 

whatever its wavelength is, it is absorbed by the inner walls after 

suffering many reflections. 

The black body absorbs all wavelengths. When the temperature of the 

ball is raised regularly, it will emit radiation through the small hole 

containing all wavelengths. 

 

 

 

 

 

 If we draw a graph of the spectrum of the thermal emissions of a black 

body at different temperatures between energy and wavelength, after 

taking a narrow beam from a hot body and passing it through a special 

spectrometer to sort its waves, the radiant energy in this beam is 

measured with a special thermometer, and we notice from the drawing 
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1-  Energy starts from zero when the wavelength is zero and 

approaches zero at infinity 

2-  The maximum limit lies between these two values 

3- The upper end of the two curves rises as the temperature rises 

and shifts towards short wavelengths. 

Question: Why don't all bodies radiate their internal energy to the end 

and cool down to absolute zero? 

The answer to this is that the reason for this is due to the environment, 

if we assume the presence of the body inside the room so that the walls 

of the room and the rest of the existing bodies radiate this energy and 

intercept the body and absorb and transform into internal energy. If the 

body is at a temperature greater than room temperature, the body will 

start In transmitting its heat to the ocean. 

An example of this is an electric lamp equipped with electrical power. It 

will convert its electrical energy into light energy and transmit it to the 

ocean, given that the time rate of emission is greater than the time rate 

of absorption, and it is in a state of equilibrium if the time rate of 

absorption is equal to the time rate of emission. 

Suppose there are several opaque bodies whose absorbance is a1, a2, a3, 

……. and reflectivity r1, r2, r3, ……… they are in equilibrium with each 

other and with the surroundings. If a ray of small wavelength and 

intensity falls, a large part of the radiation will be absorbed by the body 

and a small part will be reflected, so the sum of the rate of reflection 

and absorption of the body is equal to one 

a1+r1=1 

Radiation intensity I Emission power for wavelength wλ , First body area 

ΔA1 Total radiance in the case of emission 

     1 1w A t                                                                                            (1) 

body absorption 
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    1 1a I A t                                                                                                                     (2) 

in equilibrium 

     1 1 1 1w A t a I A t                                                                        (3) 

    2 2 2 2w A t a I A t                                                                                             (4) 

And by dividing (3) by (4)  
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And if a for a black body is equal to one 
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Suppose we have a cavity in the form of two parallel plane plates of two 

different materials and that the ray travels back and forth between the 

two planes at equal temperature 

 

 

 

 emitter M1 emitter M2 

W2Δt ← to (1)  (2)→ to      W1Δt 
(1-a1) W2Δt  → (1-a2) W1Δt← 

(1-a1)(1-a2) W2Δt← (1-a1)(1-a2) W1Δt→ 

(1-a1)2(1-a2) W2Δt→ (1-a1)(1-a2)2 W1Δt← 

(1-a1)2(1-a2)2 W2Δt← (1-a1)2(1-a2)2 W1Δt→ 

(1-a1)3(1-a2)2 W2Δt→ (1-a1)2(1-a2)3 W1Δt← 

m1 r1  a1 

m2 r2  a2 
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The radiation lines emitted from the unit area of each face through a 

period of time Δt in order for the beam to cross between two parallel 

plates, meaning that the radiation will fall on the first face and lose its 

energy and reflect part of another of it and through the occurrence of 

these successive passes of the first radiation from each face until the 

arrival of To stabilize it will pass through the tunnel and towards the 

right. 
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It has been experimentally proven by the scientist Stellan and 

theoretically by the scientist Boltzmann that the radiant energy per unit 

time E of the radiating black body is proportional to the absolute 

temperature T4 

 

   
4E T                  

4E T 

Where σ is Boltzmann's constant and is equal to 

σ=(5.6696±0.001)*10-8 wat.m-2.k-4 
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The total energy emitted per unit time of the emitting area is 

proportional to the area under the curve. 

Explanation of the reasons for the black body radiation and the 

reason for the continuity of its spectrum and its dependence on 

temperatures. 

1- Finn: His attempts were, according to classical physics, all bodies 

contain electrical charges such as electrons and protons, and in 

temperatures these charges fluctuate rapidly and increase as the 

temperature rises. a certain temperature. 

Fenn developed an interpretation of the heat radiation energy 

distribution curve, and his theory succeeded with the experimental 

curve, but it failed at large wavelengths. 

 

  max

b

T
     

2-  Riley-Jeans's Trying 

The black body was discussed, where the thermal rays are reflected 

at the inner walls of the black body gap back and forth forming 

stable waves for each frequency. Experimental radiative curves 
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c is speed of light   

k  is Boltzmann's constant 

As the wavelength decreases, it continues to rise until it reaches its 

maximum limit and then begins to decline, but according to Rayleigh-

Jones law, the intensity of heat radiation increases as the wavelength 

shortens and continues to rise to infinity. 

 

3- Plank's Trying 

There are two equations equation that agree with high frequencies and 

fail with low frequencies, while the other equation agrees with low 

frequencies and fails with high frequencies. 

Since the charges fluctuate at all possible frequencies and energies, 

continuous electromagnetic waves are expected to cover the spectrum of 

the black body. on the continuity of electromagnetic waves. Planck 

assumed that radiation of frequency (γ) is emitted and absorbed in the 

form of quanta 

0, hγ, 2hγ, …………… 

h= 6.62*10
-34

  J.s           blank's constant 

The amount of violet light is greater than the frequency of red light. 

When the oscillator moves from one energy to another or from bottom to 

top, it absorbs energy, ie, moving from the lower level to the higher level. 

 

 

 

 

 

 



11 
 

The effect of radiation on matter 

Radiation affects the material in three ways, depending on the energy of 

the radiation falling on the material, and these methods are: 

1-  The effect of the photoelectric phenomenon 

 

  ep p p                                                                                    (1) 

 e BE T T E          

  e BE T E                                     e BT E E     

  Where Eγ and pγ are the energy and momentum of the incident radiation, 

respectively, Te and pe are the kinetic energy and momentum of the 

liberated electron, EB, the energy of the electron's attachment to the atom, 

and Pα the atom's recoil momentum. 

The probability of the occurrence of the photoelectric phenomenon when 

the energy of a photon ranges from 0.1 to half a million electron volts. 

The kinetic energy plus the recoil energy of the atom plus the bonding 

energy. The recoil energy can be neglected because it is small. 

  e BT h E       

The photoelectric phenomenon can occur in other orbitals, such as M and 

L, and so if the incident energy is less than the bonding energy of the 

electron in the M orbital, it will move to the other orbit, as shown in the 

following figure 

11 10 9 8 7 6 5 4 3 2 1 0 L= 

o N  M L k I h g f d p s symbol 
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L is the total angular momentum 

 

 

 

 

 

 

 

 

When the gamma rays exceed half a million electron volts, the 

photoelectrons are emitted from the k orbital. 

According to Maxwell's theory, the speed of electrons increases with the 

increase in the intensity of the incident rays, but the result is different as 

the number of electrons increases with the increase in the incident 

intensity, meaning that the number of emitted electrons per second is 

directly proportional to the incident intensity and the speed of electrons 

increases with the increasing frequency of the incident rays, and there is a 

limit for the emission of electrons called the threshold limit without that 

An electron cannot separate from an atom. 

The following figure shows the practical experiment on the occurrence of 

the photoelectric phenomenon

 

Eγ =hυ 

L  shell 

K shell 

M shell 
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When a monochromatic electromagnetic beam falls on the surface of the 

metal anode connected to the positive terminal of the battery and is inside 

an airless container, to prevent the collision of freed electrons with air 

molecules. When the electrons are liberated from the surface of the metal 

and are able to reach the negative plate and the cathode, and most of the 

time it is of the same material as the anode, an electric current passes in 

the circuit and can be measured through the ammeter, which expresses 

the intensity of the photovoltaic current passing through the circuit and 

the greater the number of electrons liberated from the surface of the metal 

The higher the output current. Note here that the direction of the 

conventional current is in the opposite direction of the movement of 

electrons. 

Note that 

1-   The energy of the electrons released from the anode is different 

2-   The electric force generated by the electric field between the 

cathode and the anode acts in the opposite direction of the 

electrons' movement. 

3-  The kinetic energy of the electrons is equal to the work done on 

them by the electric field through the following relationship: 

1/2mv
2
=eV 

To measure the kinetic energy of the electrons, it is by slowing and 

stopping the electrons, and this is done by reversing the polarities of the 

voltage applied to the two plates until it reaches a reading of zero. 

Example \ If the threshold frequency of sodium is 4.4 * 10
14

 Hz (1) what 

is the energy done to free an electron (2) If the frequency of the incident 

light is 10
15

 Hz, what is the greatest kinetic energy that the photon gives 

to the electron 

Solution\ 

     
34 14 1 196.62 10 . 4.4 10 sec 2.9 10E h J s joule              

            
34 15 1 196.62 10 . 10 sec 6.6 10h J s joule               

           
19 196.6 10 2.9 10 2.3e BT h E eV             
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Example \ What is the energy of an infrared photon if its wavelength is 

10
-6

  

 

 

 

2- Compton effect 

When the energy of the photon is greater than a certain amount of 

the correlation energy, an inelastic collision of the rays with the 

electron can occur, where we notice that after the fall of the photon 

and its collision with the electron, it is scattered at an angle θ and 

the photon is scattered at an angle ϕ and υ represents the frequency 

of the incident photon and ῡ represents the frequency of the 

scattered photon 

 

  'eT h h                                                                             (1)   

 E h pc                

c
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h
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                                                                                                               (2) 
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cos cos

h h
p

c c

 
                                                          (3) 

cos cospc h h                                                           (4) 
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 sin sin sin sin
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p pc h
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
    


                                        (5) 

 

By squaring equations (4) and (5) and adding them together, we get 

 

 
2 2 2 2( ) 2( )( )cos ( )p c h h h h                                 (6)  

 

It is known that total energy = kinetic energy + potential energy 

   
2

o eE m c T                                                                                                     (7) 

   

mo is the rest mass of the body, and the total energy is defined 

by Dirac's assumption 

       
2 4 2 2

o eE m c p c                                                                              (8) 
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  

   
       

    
2 2 2 22e e o ep c T m c T                                                                                (9) 

     eT h h       

   
2 2 2( ) 2( )( ) ( )eT h h h h                                       (10) 

 

In compensation (9) and (10)   
 

     2 2 2 2 2( ) 2( )( ) ( ) 2e op c h h h h m c h h              (11) 

 

Substituting pc into equation (6) in (11) we get 
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       22 2( )( )(1 cos )om c h h h h                         (12)  

And by dividing by 2c2h2 

  2
(1 cos )om c

h c c c
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h

m c
                                                               (15) 

     
(1 cos )

o

h
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And by moving 1/υ and dividing by h  and λ=c/υ    

2

1 1 1
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
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               when    ϕ=180

o
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(1 cos )

1 (1 cos ) 1 (1 cos )
e e

h
T h T h

  
 

   


   

    

           

Example: A photon with an energy of 3 million electron volts falls and 

the Comten phenomenon occurs. Find the energy of the photon and the 

energy of the scattered electron at 90
o
 and 180

o
 static energy 

(moc2=0.511MeV). 

Solution

2

3
0.437

3
1 (1 cos ) 1 (1 0)

0.511

3 0.437 2.503

o

e

h
E h MeV

h

m c

T h h MeV









 

    

   

    

 

3-  Pair production 

In the case of absorbing energy equal to twice the rest mass of the 

electron (0.511 MeV), a pair of electron and positron equal to 

2moc
2
=1.02MeV 

So Dirac's electron equation solved this problem, and Dirac assumed 

that the electron could exist in one of the two energy levels. 

1-  It has a wave energy and a rest mass of moc
2
, so the energy of the 

electron is either greater or equal to moc
2
. 

E ≥ moc2 

2-  A level with negative energy moc
2
 so that E ≤ moc

2
 The area 

between them is called the non-permissible field 
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Atomic Model 

1- Thomson Model 

 In lesson 3 you have learnt that all matter is made of atoms and all the 

atoms are electrically neutral. Having discovered electron as a 

constituent of atom, Thomson concluded that there must be an equal 

amount of positive charge present in an atom. On this basis he proposed 

a model for the structure of atom. According to his model, atoms can be 

considered as a large sphere of uniform positive charge with a number 

of small negatively charged electrons scattered throughout it, Fig. 5.4. 

This model was called as plum pudding model. The electrons represent 

the plums in the pudding made of negative charge. This model is similar 

to a water-melon in which the pulp represents the positive charge and 

the seeds denote the electrons. However, you may note that a water 

melon has a large number of seeds whereas an atom may not have as 

many electrons. 
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2- Rutherford’s model  

Ernest Rutherford and his co-workers were working in the area of 

radioactivity. They were studying the effect of alpha (α) particles on 

matter. The alpha particles are helium nuclei, which can be obtained by 

the removal of two electrons from the helium atom. In 1910, Hans 

Geiger (Rutherford’s technician) and Ernest Marsden (Rutherford’s 

student) performed the famous α-ray scattering experiment. This led to 

the failure of Thomson’s model of atom. Let us learn about this 

experiment. α-Ray scattering experiment In this experiment a stream of 

α particles from a radioactive source was directed on a thin (about 

0.00004 cm thick) piece of gold foil. On the basis of Thomson’s model it 

was expected that the alpha particles would just pass straight through 

the gold foil and could be detected by a photographic plate placed 

behind the foil. However, the actual results of the experiment, Fig., were 

quite surprising. It was observed that:  

(i)  Most of the α-particles passed straight through the gold foil. 

(ii)  Some of the α-particles were deflected by small angles. 

(iii)  A few particles were deflected by large angles. 

(iv)  About 1 in every 12000 particles experienced a rebound 
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 The results of α-ray scattering experiment were explained by Rutherford 

in 1911 and another model of the atom was proposed. According to 

Rutherford’s model, Fig. 5.6(a).  

a- An atom contains a dense and positively charged region located at 

its centre; it was called as nucleus,  

b- All the positive charge of an atom and most of its mass was 

contained in the nucleus,  

c- The rest of an atom must be empty space which contains the 

much smaller and negatively charged electrons, 

 

 

On the basis of the proposed model, the experimental observations in the 

scattering experiment could be explained. This is illustrated in Fig. above. 

The α particles passing through the atom in the region of the electrons 

would pass straight without any deflection. Only those particles that come 

in close vicinity of the positively charged nucleus get deviated from their 

path. Very few α-particles, those that collide with the nucleus, would face 

a rebound. On the basis of his model, Rutherford was able to predict the 

size of the nucleus. He estimated that the radius of the nucleus was at 

least 1/10000 times smaller than that of the radius of the atom. We can 

imagine the size of the nucleus with the following analogy. If the size of 

the atom is that of a cricket stadium then the nucleus would have the size 

of a fly at the centre of the stadium. 
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3- BOHR’S MODEL OF ATOM  

In 1913, Niels Bohr,a student of Rutherford proposed a model to account 

for the shortcomings of Rutherford’s model. Bohr’s model can be 

understood in terms of two postulates proposed by him. The postulates 

are: Postulate 1: The electrons move in definite circular paths of fixed 

energy around a central nucleus; just like our solar system in which 

different planets revolve around the Sun in definite trajectory. Similar to 

the planets, only certain circular paths around the nucleus are allowed for 

the electrons to move. These paths are called orbits, or energy levels. The 

electron moving in the orbit does not radiate. In other words, it does not 

lose energy; therefore, these orbits are called stationary orbits or 

stationary states. The bold concept of stationary state could answer the 

problem of stability of atom faced by Rutherford’s model. 

 

It was later realised that the concept of circular orbit as proposed by Bohr 

was not adequate and it was modified to energy shells with definite 

energy. While a circular orbit is two dimensional, a shell is a three 

dimensional region. The shells of definite energy are represented by 
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letters (K, L, M, N etc.) or by positive integers (1, 2, 3, …. etc.) Fig.. The 

energies of the shells increase with the number n; n = 1, 

level is of the lowest energy. Further, the maximum number of electrons 

that can be accommodated in each shell is given by 2n2, where n is the 

number of the level. Thus, the first shell (n=1) can have a maximum of 

two electrons whereas the second shell can have 8 electrons and so on. 

Each shell is further divided into various sublevels called subshells about 

which you would study in your higher classes. Postulate 2: The electron 

can change its shells or energy level by absorbing or releasing energy. An 

electron at a lower state of energy Ei can go to a final higher state of 

energy Ef by absorbing a single photon of energy given by: E = hν = Ef – 

Ei Similarly, when electron changes its shell from a higher initial level of 

energy Ei to a lower final level of energy Ef , a single photon of energy 

hν is released (Fig.). 
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For the purpose of calculating the permissible orbits predicted by the 

scientist Bohr, he used the hydrogen atom, which consists of one positive 

charge around which one electron revolves, and assume that the nucleus 

is fixed and that the electron revolves around the nucleus with a radius of 

r. 

  Q Ze e                                                                                (1) 

Z is atomic number, Q is the total charge 

Bohr used Newton's second law and Coulomb's law 
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v is electron velocity  
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One of Bohr's hypotheses is that in order for an electron to orbit in one of 

the orbits, it must have an angular momentum of multiples n  
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From equation (5) 
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And equal to equations (7) and (8), we get 
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The total energy according to the Bohr model 

The total energy is the sum of kinetic energy + potential energy 

   E T V                                                                                (10) 
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The potential energy at a distance r from the charge Q is
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So the total energy is 
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By equating the two equations (14) with (9), we get 
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Putting Z back into the equation, we get 



26 
 

    

2 4

2 2 28 o

Z me
E

n h
 

 

Substituting for the constants, we get the energy in electron volts. 

 2

13.6
E ev

n
  

We note from this equation that the energy is inversely proportional to the 

square of the main orbital number (n), and the negative sign indicates an 

effort to free the electron from attracting the nucleus. The energy level (n 

= 1) represents the ground state and the stable state, while n = 2, 3, 4, … 

It refers to the unstable levels. If the quantum number approaches 

infinity, this means that the energy of the levels approaches zero and the 

energy of the electron becomes zero. The electron in this case is free and 

not restricted by the electric field of the nucleus. The energy required to 

remove an electron from the ground level to the infinity level is known as 

the ionization potential. 

The ionization potential of a hydrogen atom is (13.6 eV( 
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Calculating the radii of electronic orbits
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Orbit radius n = 1 (smallest orbit) after compensation

100.529 10 0.529 o

or a m A    

According to Bohr's second assumption, orbitals have specific 

energies, so the transfer of an electron from one orbit to another will 

be accompanied by gain or loss of energy. 
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ni represents the initial orbital and nf  represents the final orbital 
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K' is the wave number, and to write the equation in terms of the wave 

number k' 
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RH is the Rydberg constant 

There are five series of hydrogen spectral lines 
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1-  Lyman series: The result of the electron transition from n>1 to 

n=1 . is produced 

    2 2
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3- Palmer series: - We get it from the transition of an electron from 

n>2 to n=2 
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4- Paschen series:- We get it from the transition of an electron from 

n>3 to n=3 
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5- The Brackett series: We get it from the transition of an electron 

from n>4 to n=4 

6- Pfond series: - We get it from the transition of an electron from 

n>5 to n=5 

 

Example/  Calculate the wavelength of the photon emitted when a 

hydrogen atom moves from n=3 to n=2. 

 

X-Rays: transitions involving inner shell electrons 

We have been concerned, so far, with the energy levels of the valence 

electrons i.e. those electrons outside the filled shells (or sub-shells). 

Transitions between these levels involve photons in the energy range of _ 

10eV down to 10
−6

eV. These energies correspond to wavelengths of _ 

10
−7

m to 1m. (Ultra Violet, visible, infra-red, microwaves and radio 

waves). When photon energies are much larger than 10eV i.e. in the keV 

range then the interaction can disturb the tightly bound, inner-shell 

electrons. Conversely, transitions of an inner-shell electron from one shell 
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to another will involve emission or absorption of the high energy, short-

wavelength photons; X-rays. Usually, however, all the energy 

levels of the inner shells are occupied, so, in order to allow transitions to 

occur at all, we first have to create a vacancy in one of the inner shells. 

The energy required to do this can come from either the absorption of a 

sufficiently energetic photon, or from the kinetic energy of impact with a 

high energy electron. 

 

X-ray Spectra 

X-rays are generated when high energy electrons strike a solid target e.g. 

the metal anode in a “cathode-ray” tube. The spectrum of the X-rays 

generated in this way consists firstly of a continuous 

range of wavelengths down to a limiting value corresponding to the 

maximum energy of the incident electrons. These X-rays are the result of 

the deceleration of the charged particles and are known as 

“bremsstrahlung” or “braking radiation”. 

 
 

When the energy of the electrons is increased above a certain value, for a 

given target material, sharp peaks i.e. discrete lines, appear superimposed 

on the continuous “bremsstrahlung”. The 

spectrum of these discrete lines are characteristic of the target element. 

These characteristic X-rays have the following properties: 

• The wavelengths fit a simple series formula. 

• All the lines of a particular series appear together once the incident 

electrons exceed a particularthreshold energy. 
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• The threshold energy for a particular series just exceeds the energy of 

the shortest wavelength in the series. 

• Above a certain energy, no new series appear. 

These observations are explained by the following process: 

The incident energy (from electron impact) is transferred to an inner-shell 

electron. If this energy is sufficient the inner-shell electron is raised to a 

vacant energy level. Now the vacancy energy levels are those lying 

between the atoms ground state energy and the ionization limit. This is a 

range of only 10eV or so. If the incident energy is of the order of 103eV, 

or greater, then the most likely result is to ionize the atom i.e. the inner-

shell electron escapes with a kinetic energy equal to the incident impact 

energy less the binding energy of the inner shell. An electron from a 

higher inner shell may “fall” into the vacancy. As a result of this 

transition an X-ray photon is emitted with an energy corresponding to the 

difference in binding energy of the two shells. For example, creation of a 

vacancy in the n = 3 shell allows electrons from n = 4, or higher shells to 

“fall” into the n = 3 vacancy. (Higher energy impacts may eject electrons 

from deeper shells n = 2 and n = 1) These transitions are the source of the 

discrete, characteristic, X-ray lines. X-ray spectroscopy developed its 

own nomenclature and it is still (unfortunately) used, so we have to live 

with a further set of labels. In the context of X-rays the n = 1, 2, 3 shells 

are knows as K, L, M etc. respectively. 

X-ray series 

The X-rays emitted in transitions between inner-shell energy levels will 

have energies corresponding to the difference in binding energy of the 

electrons in the two shells concerned. The binding energy of an electron 

in a given shell of quantum number, n, may be expressed using a 

hydrogenic model: 

 

Where R is Rydberg’s constant. _n is a screening factor that accounts for 

the effect of the other electrons. 
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For the K-shell (n = 1) there are 2 electrons. As the ejected electron 

moves outwards the remaining electron provides a spherically symmetric 

shell around the nucleus of Z protons and reduces the effective nuclear 

charge to (Z − 1). The other electrons in higher shells also make a 

contribution to the screening. The total screening factor, _k is then 

approximately 2. It is difficult to calculate screening factors, although 

good estimates can be made using atomic structure calculations. Usually 

we reply on experimental (empirical) values for _. (The screening factors 

also depend on the angular momentum of the states involved.) Transitions 

from higher shells to a vacancy in the K-shell give rise to a series of lines. 

The wavenumber (_ = 1/_) of these lines will be given by the differences 

in the binding energies: 

K-series: 

 

Where ni = 2, 3, 4 etc. 

In general: 

 

With ni, nj integers and ni < nj . 

 

The longest wavelength series member is labelled _, with successive lines 

denoted _,  etc. 
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Fine structure of X-ray spectra 

A single vacancy in an otherwise full shell has the properties of a single 

electron in an otherwise empty shell. The X-ray energy levels therefore 

resemble those of hydrogen or alkali atoms. The energy levels are split 

into terms and the terms are split by spin-orbit interactions giving “fine 

structure”. The energy splitting due to fine structure can be written 

 

The levels are labelled by quantum numbers (n, l, s, j). The “Z4” factor 

results in very large “fine structure” splitting for heavy elements (large Z) 

eg. 107cm−1 in Uranium! This structure was relatively easy to measure 

and for a long time such measurements gave the most accurate values of 

_, the fine structure constant. The X-ray lines have a multiplet structure 

governed by selection rules: 

 

e.g. the Ka line becomes a doublet Ka1 , Ka2. 

X-ray absorption 

Absorption spectra in the visible or UV-range of the spectrum consist of a 

series of discrete lines whose wavelengths coverage to a series limit; the 

ionization limit. The strength of the lines decreases also towards the 

ionization limit. For shorter wavelengths than this limit the absorption is 

spectrally continuous and continues to decrease in strength as the 

absorbed wavelengths get shorter. The discrete absorption spectrum, the 

series of discrete lines, is the result of transitions of a valence electron to 

higher, vacanct, energy levels. Beyond the series limit, absorption results 

in photoionization; the bound electron is excited to an unbound, free state 

known as the continuum. The probability of the photoionization decreases 

with increasing energy of the incident photon because it becomes 

increasingly difficult for the photon/atom system to conserve both energy 

and momentum in the interaction. The valence electrons are relatively 

weakly bound to the massive nucleus and so cannot easily transfer 

momentum to the nucleus. When the incident photons have X-ray 
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energies they may raise an inner shell electron to an empty shell (valence 

shell) or eject it from the atom (photoionization). On the scale of X-ray 

energies the valence shell energies are negligible so photoionization is the 

most likely result. Once the threshold energy for photoionizing an inner-

shell electron is exceeded there is a sudden increase in the absorption 

probability. The sharp increase in absorption coefficient associated with 

such a threshold is called an absorption edge. 

 

These absorption edges are labelled according to the quantum number of 

the shell; K edge (n = 1) L edge (n = 2) M, N etc. Each edge exhibits the 

fine structure of the shells. Thus the M edge (n = 3) has 5 subsidiary 

edges associated with spin-orbit splitting of the angular momentum states, 

2S1/2, 2P1/2,3/2, 2D3/2,5/2. The L-edge has 3 steps and the K-edge is 

single. When an absorption edge is examined with high spectral 

resolution it may be found to consist of a few broad peaks that merge into 

the continuum. These features cover a range of typically 10eV and 

correspond to transitions from the inner shell to one of the vacancy 

valence electron shells. These absorption features are broadened by 

“lifetime broadening” since the Einstein A-coefficient scales with _3, the 

cube of the transition frequency. (Recall that A=1/_, where _ is the 

lifetime of the upper state against radiative decay.) As a result of this 

broadening only a few of these transitions can be resolved. Above an 

absorption edge, the absorption coefficients drops off until the photon 

energy exceeds the next inner shell binding energy and a new edge is 

observed. At the K-edge, for example, the photon energy is capable of 

ejecting an L or M shell electron. It is more likely, however to eject the 

K-shell electron which is more strongly bound to the nucleus than any of 

the higher shell electrons. As a result the excess momentum is more 

effectively transferred to the nucleus. So those electrons held most 
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strongly to the nucleus are most effective in absorbing X-ray photons. 

This effect partly explains the rapid change in absorption at the edge and 

the fall-off in absorption for energies above each edge. 

 

Auger Effect 

The creation of a vacancy in, say, the K-shell is followed by one of two 

processes. 

• Emission of characteristic X-rays as already described. 

• The ejection of a second electron and emission of longer wavelength X-

rays. This is the Auger effect. 

 

The Auger effect arises because the vacancy in the lower shell (in this 

case the K-shell creates potential energy that is shared by all the L-shell 

(and higher shell) electrons. When one L-electron falls in the K-shell 

vacancy it can give up its energy either as an X-ray (Ka line) or as kinetic 

energy to another L-shell electron. The donated energy is EK − EL and 

may exceed the L-shell binding energy. If (EK − EL) > EL then this L-shell 

electron has enough kinetic energy to escape. The resulting ejected 

electron has kinetic energy (EK − EL) − EL = EK − 2EL. This Auger effect 
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is analogous to autoionization from doubly excited states in two electron 

atoms. There are now two vacancies in the L-shell that can be filled by 

electrons “falling” from higher shells. This leads to emission of longer 

wavelength X-rays than the K-series or further Auger processes may 

occur. 

Production of X-rays 

 An X-ray tube is a vacuum tube designed to produce X-ray photons. The 

first X-ray tube was invented by Sir William Crookes. The Crookes tube 

is also called a discharge tube or cold cathode tube. A schematic x-ray 

tube is shown below. 

 

The glass tube is evacuated to a pressure of air, of about 100 pascals, 

recall that atmospheric pressure is 106 pascals. The anode is a thick 

metallic target; it is so made in order to quickly dissipate thermal energy 

that results from bombardment with the cathode rays. A high voltage, 

between 30 to 150 kV, is applied between the electrodes; this induces an 

ionization of the residual air, and thus a beam of electrons from the 

cathode to the anode ensues. When these electrons hit the target, they are 

slowed down, producing the X-rays. The X-ray photon-generating effect 

is generally called the Bremsstrahlung effect, a contraction of the German 

“brems” for braking, and “strahlung” for radiation. The radiation energy 

from an X-ray tube consists of discrete energies constituting a line 

spectrum and a continuous spectrum providing the background to the line 

spectrum.  
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Properties of X-rays 

a- X-rays travel in straight lines. 

b-  X-rays cannot be deflected by electric field or magnetic field.  

c- X-rays have a high penetrating power.  

d- Photographic film is blackened by X-rays. 

e- Fluorescent materials glow when X-rays are directed at them.  

Photoelectric emission can be produced by X-rays. 

f- Ionization of a gas results when an X-ray beam is passed through it. 

 

X-Ray Diffraction 

A plane of atoms in a crystal, also called a Bragg plane, reflects X-ray 

radiation in exactly the same manner that light is reflected from a plane 

mirror, as shown in Fig. 

 

Reflection from successive planes can interfere constructively if the path 

difference between two rays is equal to an integral number of 

wavelengths. This statement is called Bragg’s law. 
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From Fig. above, AB = 2dsinθ so that by Bragg’s law, we have 2d sinθ = 

nλ Where in practice, it is normal to assume first order diffraction so that 

n = 1. A given set of atomic planes gives rise a reflection at one angle, 

seen as a spot or a ring in a diffraction pattern also called a diffractogram. 

 

Wave and Particle Theory 

What is meant is that the rays behave in some experiments as if they were 

wave motion and in others as if they were particle motion. The first case 

depends on the path or paths that the light passes through, as in the 

interference experiment in which the path difference is calculated. It can 

be said that light or electromagnetic rays behave as a wave in reflections, 

refractions, interference, diffraction and polarization. 

The second case, the photoelectric phenomenon revealed that the nature 

of light energy is particles and is emitted by a light source whose 

frequency is υ, which are photons with separate energies and behave as 

particles. So to sum up, the photons are of a material nature once and of a 

wave nature again, that is, according to the conditions to which the 

photon is exposed. 

 

De Broglie hypothesis 

Based on an equation that relates energy and momentum according to the 

theory of relativity 
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 So de Broglie assumed that the above equation is a general law that 

includes photons and material particles, so if light sometimes behaves as 

a wave and at other times as particles, then particles such as electrons, 

protons, atoms and molecules must behave in a similar way, that is, they 

must be accompanied by a certain wave property. 

De Broglie assumed the momentum of a body of mass m is p and its 

velocity v, so that the de Broglie wavelength associated with the particle's 

motion is
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Example Calculate the associated wavelength of a 1kg particle moving at 

2 x 10
3
 m/sec. 

34
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Wave Function ψ 

It is a variable quantity that expresses the wave, and that the value of this 

function depends on the probability of the moving particle being located 

in place (x,y,z) and at time t, and that the probability of the particle 

having wave function ψ at the location (x,y,z) and time t is proportional 

to | ψ|
2
 

In the same space and time, |ψ|
2
 is the square of the absolute value of the 

wave function and is called the probability density. When the wave 

function ψ is a complex quantity that has a real part and an imaginary 

part, the wave function represents
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De Broglie wave speed 

If the object is moving, it will be accompanied by a wave of velocity of 

this wave 

                                                   ω  wave velocity 

This is determined by the velocity of the particle. We note that the 

velocity of the de Broglie wave is faster than light. This idea does not 

contradict the theory of relativity, which prevents the speed of the body 

from reaching the speed of light, because the theory of relativity 

emphasizes that velocity is responsible for the transfer of mass and 

energy, while the speed of the accompanying wave is not. On the transfer 

of mass and energy 

    E h                        

2E mc

h h
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.
mc h c

h mv v
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In order to understand this result, it is necessary to understand the 

velocity of the wave and the velocity of the wave group. Let's imagine 

there is a tight rope on the x axis and its parts oscillate with a simple 

harmonic movement, at time t = 0 and x = 0 and this is represented before 

the start of the vibration and we shake the rope, the wave moves with a 

distance 
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    x t          

At time t and the interval between x=0 and the point x 
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We note that the displacement y at point x and time t is equal to the 

displacement y at point x = 0 and the moment 
x

t
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  after substitution 
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An equation representing in terms of the three coordinates k is the wave 

number and r is the radius vector 

 

Uncertainty principle 

Heisenberg showed that the position and momentum of the particle 

cannot be determined simultaneously and precisely. This principle was 

based on the fact that this quantity is determined precisely and that one is 

according to the following relationship 

  x p                          
2

h


          
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 Δx represents the indeterminacy of the particle's position and Δp 

represents the indeterminacy of the particle's momentum. This equation is 

known as the product of error Δx times the particle's position and the 

error Δp of the particle's momentum in a measure of x and p is greater or 

equal to 
2

h


   

  yy p   

 Assume a wave group corresponding to a particle located within the 

distance Δx 

    1x k                                                                                     (1) 

  

h

p
                      

2 2 p
k

h

 


        

           

2 p
k

h


 

                                                                            (2)  

   Substituting (2) into (1), we get 

 
2

h
x p


    

If I want to measure the energy E emitted by an atomic process during a 

period of time Δt If the energy is emitted in the form of electromagnetic 

waves, the process of determining the time period will affect the 

measurement of the wave frequency 

    

1

t
 

                            

h
E h

t
   


 

        E t h                   E t   

Question \ Can the electron be located inside the nucleus? The radius of 

the nucleus is R = 10-14 m, which represents the error in the particle's 

position. 
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If we assume that the electron is inside the nucleus, knowing that the 

electron's static energy is (0.511MeV), this means that it cannot exist 

inside the nucleus. If we assume that the electron  

It is inside the atom, knowing that the radius of the atom, according to 

Bohr's theory of the hydrogen atom, is (R = 5 x 10
11

m), and this 

represents the error in the particle's location. 
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Schrödinger equation 

In order to study the Schrödinger equation, we start with the movement of 

a particle in one dimension of mass m and velocity v. 

   

x
i t

Ae



 
 

                                                                      (1) 

  2             

   

2
x

i t

Ae
 


 

 
                                                                                        (2) 

Equation (2) can be written in terms of momentum and energy 

  E h              
2

E E

h



              

2h

p p


  
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 
i

Et px

Ae




                                                                    (3) 

Differentiating equation (3) partially twice with respect to the x-

coordinate and once with respect to time t, we get 

 

2 2

2 2

p

x





 

                                                                    (4) 

 

iE

t





 

                                                                                                  (5) 

By rearranging equations (4) and (5), we get 

 

2
2 2

2
p

x





 


                                                                     (6) 

 
E i

t







                                                                                                     (7) 

We notice from equations (6) and (7) that it is possible to replace the 

momentum p2 with the differential relationship 
2

2

2x





 with energy E  

function of      
t




 

It is known that the total energy E is equal to the sum of kinetic energy 

and potential energy 

  

2

2

p
E V

m
 

                                                                             (8) 

And by multiplying equation (8) by ψ 

 

2

2

p
E V

m


  

                                                                  (9) 
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And when we substitute p2ψ and Eψ, we get 

   

2 2

2
( )

2
i V x

t m x

 


 
  

                                      (10) 

This equation represents the time-dependent Schrödinger equation 
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i
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                                      (11) 

And by putting equation (11) in the time-dependent Schrödinger equation 

   

2 2

2
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2
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And by dividing equation (12) by 
iEt

e

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2
( ) 0

m
E V

x





  

                                                      (13) 

This represents the non-time-dependent Schrödinger equation, and by 

inserting the coordinates (x, y, z), we get 
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The electronic structure of the atom 

An introduction 
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The study of the atomic spectrum has provided a lot of valuable 

information about the structure and distribution of electrons within an 

atom. Most of the principles and rules that were used in spectroscopy 

emerged from experimental research and with the development of 

quantum mechanics, solid theoretical foundations were laid for them. The 

atom that emits radiation 

 
i fE E

f
h


  ………......................................................(1) 

where Ei is the energy of the initial state of the atom and Ef is 

the energy of the final state of the atom. Also, h is Planck's 

constant and when we use the wave number instead of the 

frequency in equation (1) we get 

 
i fE E

f
ch ch

   …………………………………………(2) 

The above equation shows that the wave number for any line in 

the spectrum is equal to the difference between two terms, i.e. 

 i ff T T  ……………………………………………..(3) 

where each term of T, expressed in wave number, represents an 

atomic energy state or energy level. The atomic spectrum can be 

classified into two groups: (1) the optical spectrum, and (2) the 

X-ray spectrum. 

Optical Spectrum Series  

The lines of any element were classified in series to facilitate the 

work of selecting lines belonging to the same series, depending 

on many types of data, including (a) the physical appearance of 

the lines, i.e. whether they are (sharp) or scattered (b) the 

method used to form the spectrum, i.e. whether an electric arc is 

used Or an electric spark (c) How are the spectral lines affected 

when an electric or magnetic field is applied to the atoms that 
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emit them, such as the Zeeman phenomenon that we will discuss 

later. 

In the year 1889, Redberk suggested that the light series known 

at that time could be arranged in such a way that the wave 

number of any line of the series equals the difference between 

two terms, as follows: 

 

2

2( )

RZ
f f

n 
 


 ………………………………(4) 

where R is the Rydberg constant, n is an integer, and ɸ is a 

fraction of less than one and is almost constant for all lines of 

the series. The series approaches the limit for very large values 

of n and the limit is the wave number that the series approaches 

as a limit when n approaches infinity. 

Also, Z = 1 for the series of neutral atoms, Z = 2 for ions with a 

single charge, Z = 3 for ions with a dual charge, and so on, and 

the similarity between the Rydburke relationship and the Bohr 

frequency condition is self-evident. In the event that the 

wavenumber of any line of the spectrum series is equal to the 

difference between a fixed term and a variable term. The 

constant term is the wavenumber of the end of the series that 

represents either the letter f 
 or 1T . The variable term is a 

wavenumber associated with an atomic state described by a 

given value of the integer n and the constant ɸ. 

Among the most numerous sequences of spectral lines of any 

element of intensity are the main, acute, diffuse, and 

fundamental sequences. 

The series is represented in terms of the Rydburke relationship 

by the following equations: 

main sequence 
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 2
( 2,3,4,.....

( )

R
f P n

n P
  


 

Sharp series  

 2
( 2,3,4,.....

( )

R
f S n

n P
  


 

diffuseness series 

 2
( 3,4,5.....

( )

R
f D n

n D
  

 

Fundamental series 

 2
( 4,5,6.....

( )

R
f F n

n F
  

 

Where replace f 
 the symbols P  ,  S  , D   and F   as well as 

replace the constant ɸ in the last term with the letters F, D, S, P 

in the Rydburke relationship and the values of these constants 

are different as it was found experimentally that the fixed terms 

have the following values: 

2(1 )

R
P

S
 


  

2(2 )

R
S
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
 

2(2 )
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2(3 )

R
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D
 


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It can be seen that each of the acute series has the same purpose 

as the series, and in most cases a shorthand guide is used to 

write the equations of the different series. By using the letters 

that appear in the denominator of the concerned term to 

represent the term. That is, to write np as an abbreviation  

for term R/(n+p)
2
 and nS for term R/(n+S)

2
 and nD for term 

R/(n+D)
2
 and so on. In terms of this demonstration, the lines of 

the different series are written as follows: 

basic series 

1f S nP  

Sharp series 

2f P nS  

Diffuseness series 

2f P nD  

Fundamental series 

3f D nF  

According to the boundary values of a number of energy states 

for all elements by analyzing their spectra, even if the wave 

number of any line is equal to the difference between two terms, 

but the opposite is not always true, meaning that not all the 

differences that may be between the boundary values of an atom 

represent the spectral lines. To explain the absence of certain 

lines, it is necessary to use The selection rule, which was 

previously used for the hydrogen atom, but it is difficult to use 

this method for complex atoms because we have to solve the 

Schrödinger equation for a system consisting of three or more 
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particles, and for this reason, approximation methods were used 

for most of these problems. 

 

Orbital Angular Momentum 

The angular momentum of an electron in its orbit can be represented by a 

vector L plotted perpendicular to the plane of the orbital. In this regard, 

the unit angular momentum is used / 2h   , which is the unit that Bohr 

set in his theory of the hydrogen atom. 

The orbital angular momentum according to Bohr's theorem is 

n  

The n  Represents the azimuthal quantum number. The orbital 

angular momentum according to Schrödinger's theorem is 

( 1)l l   

where l is the quantum number of orbital angular momentum 

bound to l=0,1,2,3…n-1 where n is a fundamental quantum 

number 

In the investigation of atoms that contain more than one 

electron, we will use the vector l to represent the orbital angular 

momentum vector for one electron and the vector L for the total 

angular momentum of all the electrons in the atom. And the 

numerical values of the vector l according to the vector model of 

the atom are the value of the quantum number of angular 

momentum l, so when l = 2 we will write with the concept that 

the value of the angular momentum is ( 1)l l  which in this case 

is equal to 6 . The total angular momentum vector L for an 

atom containing more than one electron is the vector sum of the 

orbital angular momentum vectors of electrons, so 

1 2 3 ......L l l l    



50 
 

With the restriction that the vector is limited to integer values 

only, for example, in the case of two electrons, one of them is in 

l1 = 2 and the other is l2 = 1 and the value of the vector 

1 2L l l  

You may take any of the following three values. The figure 

below shows the method of summing the vectors and the total 

angular momentum of the two electrons when L = 3 

( 1) 12L L   

 

 

   

  

  

  

  

 

The electron's Spin 

In addition to the earth's rotation around the sun, there is a throwing 

motion around its axis. Therefore, the Earth's total angular momentum is 

the vector sum of its orbital angular momentum and its perpendicular 

angular momentum. We might expect that the electron also has a spinning 

motion in addition to its spin motion around the nucleus. But we cannot 

describe the spin of the electron as a spherical particle because we do not 

know its exact internal structure. This means that we cannot calculate the 

angular momentum of an electron in the same way that we calculate the 

angular momentum of the Earth in terms of its radius and angular 

velocity. 

L=3 l1=2 

L=2 

l1=2 

l2=1 
l2=1 

l1=2 

l2=1 

L=1 
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He proposed the idea of spinning the electron for the first time, Alenic 

and Kodschmidt, in the year 1926 to explain the exact structure of the 

lines of the spectral sequences of some elements and the Zeeman 

phenomenon. The angular momentum of the electron due to spinning is 

determined by the following value 

 

The magnitude of s is 1/2, and the perpendicular momentum can be 

represented in terms of algebra of vectors of length s, which is equal to 

half times ħ. According to quantum mechanics, the magnitude of the spin 

electron momentum is ( 1)s s   equal, and the vector sum of the spin 

angle momentum and the number of electrons is subject to the following 

restrictions 

If the number of electrons is odd, then s should take odd multiples of the 

fraction 1/2 

For an even number, s must be an integer, which means that the vectors 

representing the spin must always be parallel in the same direction or in 

the opposite direction. The following figure shows two ideal states, one 

for three electrons in which s takes the values 1/2 or 3/2, and the other for 

four electrons in which s takes the values 1, 2, 0 

It is known that the distribution of electrons in solid materials is subject 

to the statistical theory developed by Fermi Dirac. One of the features of 

these distinct particles is that their energy is subject to the Fermi-Dirac 

statistics and that spinning them equals 1/2 ħ. These particles are called 

fermions. Such as electrons, protons and neutrons. As for the particles 

whose spin is equal to the integer numbers of the constant ħ or zero, they 

are called bosons and they are subject to the statistical theory developed 

by Einstein and Bose. 

 

 

  

 

sp s
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Model Sommerfeld 

The Sommerfield atomic model is an extension or addition to 

the Bohr atomic model. Whereas, in his model, Bohr was able to 

put equations showing the energy of electrons at each energy 

level, and he applied this to the hydrogen atom, as well as 

putting a nice explanation for hydrogen ions, achieving results 

in agreement with the results of practical experiments, which 

made his model universally accepted. However, the experiments 

that took place a few years later using more accurate devices 

and at higher energies showed that the resulting spectrum was 

not one line, but rather thin lines that were very close. Bohr 

could not explain this phenomenon through his atomic model, 

until Summerfield came to make some modifications to the 

model to allow the explanation of this phenomenon 
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According to Sommerfeld, the stationary orbitals in which 

electrons revolve around the nucleus in an atom are not circular 

but rather elliptical. 

In the picture, the spectrum of the hydrogen atom is on the right 

and the deuterium atom (an isotope of hydrogen) is on the left 

 

 

 

 

Sommerfield made two major modifications to Bohr's 

model in order to be able to explain these fine lines: 

1-  The orbit of the electron around the nucleus is 

elliptical, with the nucleus at the center of one side. 

2- The speed of the electron’s movement changes 

according to its position in the orbit, so that its speed 

increases as it approaches the nucleus and increases and 

decreases when it moves away from the nucleus. 

Because any oval has two axes, and to determine the ratio 

between the lengths of the axes, Summerfield used two quantum 

numbers to determine the shape of the orbit: 
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1- The original quantum number, which was suggested by 

Bohr in his theory, which determines the energy of the 

electron and is symbolized by the letter n 

2-  The new quantum number, which was called the orbital 

quantum number and symbolized by the value l, and it 

determines the value of the angular moment of the 

electron in its orbit, and this number can take integer 

values starting with 0 and ending with n-1. 

According to Sommerfeld, each level or orbit of electrons 

has a number of possible sub-paths, i.e. an electron in the n 

energy level can exist in any sublevel of the sum of n sublevels 

and one of those sublevels is circular and the rest are in an oval 

shape. 

Using the numbers n and l, Summerfield was able to 

determine the value between the length of the axes of the orbits 

using the simple equation: 

«b/a=(l+1)/n» where a is the length of the longest axis and 

b is the length of the shorter axis. 

Therefore, when n = 1, that is, when the electron is in the 

first energy level, then the only value of l is 0 and the value of 

a/b is equal to 1 true, meaning that the shape of the only orbital 

available is circular. 

But when the value of n = 2, we find that the available l 

values are 0 and 1 and thus we get two values for the ratio of 

sides length 1 and ½ any circular sub-energy level and another 

sub-energy level in an oval shape. The electron can exist in any 

of them according to the value of l and the electron energy 

varies in If it exists in either of the two sublevels due to the 

difference in the effective mass of the electron. 
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In the event that the quantitative number is n = 3, the 

available values for l are 0.1,2, so that the third level has three 

paths or sub-levels, one of them is circular, the second is in the 

ratio of 1/3 sides, and the third is in the ratio of 2/3, as the 

following figure shows 

 

 

 

Somerfield symbolized each sub-orbital using the English letters 

s p d f g when the value of l : 0 1 2 3 4 in order 

The sublevel value is expressed by the main level number and 

then the appropriate letter for the sublevel. 

Interpretation of fine lines of the spectrum 

Summerfield did not make any modification to Bohr's equations 

to calculate the energy values of each orbit, as he kept the same 

variables in the equation, as that equation was relatively 

accurate and agreed with practical experiments. Also, since no 

new baseline energy levels are proposed, there are no additional 

jumps. But since in his special model the paths are elliptical, the 

effective mass of the electron varies according to its location 

and speed during its rotation around the nucleus, and thus it 

became possible to explain the difference in the energy of the 

thin lines of the spectrum according to the energy of the sub-

levels between which the electron moves. 
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Summerfield then changed the shape of the track from an 

oval to a rose-like shape. 

Somerfield atomic model problems 

1- Although the Summerfield model explained the theoretical 

reason behind the existence of the thin lines that make up 

the spectrum, it could not accurately predict the number of 

such lines 

2- - The model could not explain the distribution of electrons 

around the nucleus. 

3- Summerfield model could not explain the spectra of alkali 

metals such as sodium and potassium. 

1- ummerfeld's model could not explain Stark and Zeeman 

phenomena, which are two phenomena that show that 

the emitted spectrum may be split and redistributed 

when exposed to a magnetic field or a very strong 

electric field. 

2-   Summerfield's model could not determine the strength 

of each thin line of the spectrum. 

Zeeman effect 

This phenomenon was studied by the scientist Zeeman in the 

year 1896, where it was observed that the spectral line splits into 

a group of spectral lines (equal intervals and symmetrical about 

the original line) as a result of the influence of a constant and 

regular external magnetic field B. This phenomenon has been 

called the Normal Zeeman effect, and Lorentz succeeded in 

explaining this effect using the classical laws of physics, and for 

this reason the two scientists were awarded the Nobel Prize in 

Physics in 1902. Classically at the time, this is why it was called 

the Anomaly Zeeman effect, but with the emergence and 

development of quantum mechanics theory and the creation of 

the electron’s self-spinning motion, it became easy to explain 

the anomalous effect of this phenomenon. Despite the success of 
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quantum mechanics theory in explaining this anomaly, the name 

is still in use until now. 

In the presence of hydrogen-like atoms in the external magnetic 

field (let's take it in the direction of the Z axis) the total 

Hamiltonian for the electron takes the form:

 

me is the mass of the electron and β is the Bohr magneton and its 

value 

 

We will deal here with the characteristic Schrödinger function 

for atoms similar to the hydrogen atom in spherical coordinates 

in the image: 

 

We will deal with equation () with the second and third terms 

as small perturbations, with an important question: which of 

the terms is greater? Thus, two possibilities will appear to us, 

which we will talk about in detail: 
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A - strong magnetic field 

 For a strong magnetic field, turbulence is dominant, and its 

strength is sufficient to separate the two influences (meaning 

that it does not make them couple). Thus, we can deal with their 

functions in a single way, and the function used is the image, 

which makes the two effects matrix diagonal. From it we find 

the correction of the first degree for the outer field gives: 

 

To simplify here and later, all Kroenker delta functions will be 

neglected ' ', ,
....

s s l lm m m m
   

If the electron spin is neglected, the first-order correction gives: 

B lBm   

It is said here (as it was previously said about the Stark 

phenomenon) that the external magnetic field has partially 

removed the attribute of belonging to the levels (Remove, 

partially, the degeneracy of the states), or in other words it has 

separated the levels. We would like to mention that the value of 

affiliation is defined by the equation (2S+1)(2L+1) for each of 

the values of L and S. 

Example: Study the effect of a strong external magnetic field on 

the s . plane  

We know that the s-level has values
1

, 0
2

s l  , and therefore

1
, 0

2
s lm m   in the presence of the s-level with an external 

magnetic field, and as a result of the two values
1

, 0
2

s lm m  , 
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the s-level is divided into two levels, and the difference between 

the energy of the two levels is 2βB, as in the figure: 

 

Example: Study the effect of an external magnetic field on the p. 

orbital   

The solution We know the electron in the p orbital has the value 

l=1, including ml=0, ±1 and the value s=1/2, including ms=±1/2 

and from them we make the following table: 

: 

  

We note that the p orbital was divided into five orbits as a result 

of the influence of the external magnetic field and the energy 

takes the values

2 ,,,,, , , , , , , , ,p p pE E B E E B E E       

where Ep is the energy of the p orbital before the influence of 

the external magnetic field. We expected to get six orbitals, 



60 
 

since the multiplicity of these orbitals is calculated from the 

relationship (2l+1)(2s+1)=(3)(2)=6 The orbital with energy 

E=Ep, which is not affected by the field, is derived from the sum 

of the values ml= 1, ms=-1/2 and ml=-1, ms=1/2 and therefore it 

is a binary orbital as shown in the following figure, which shows 

the splitting of the p and s orbitals 

 


